АППАРАТУРА МУЛЬТИПЛЕКСИРОВАНИЯ И КРОСС-КОММУТАЦИИ

NATEKS MMX

Гибкий мультиплексор с функцией кросс-коммутации n x 64 кбит/с

КРАТКОЕ ТЕХНИЧЕСКОЕ ОПИСАНИЕ

Версия 2.0

© Научно-технический центр НАТЕКС, 2009

Права на данное описание принадлежит ЗАО «НТЦ НАТЕКС». Копирование любой части документа запрещено без предварительного письменного согласования с ЗАО «НТЦ НАТЕКС».

Cmp. 2 из 17 Версия 1.0

ОГЛАВЛЕНИЕ

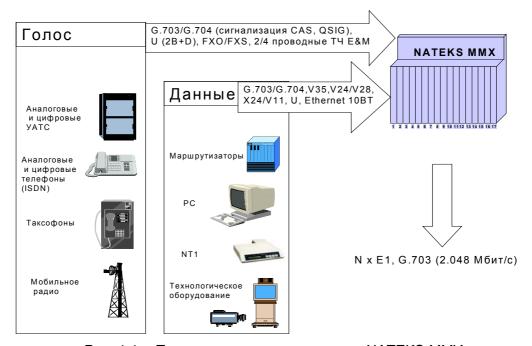
BBE	ДЕНИ	1E	4
1.	ОБЦ	ЦЕЕ ОПИСАНИЕ ОБОРУДОВАНИЯ	5
	1.1.	Интегрированное решение для передачи голоса и данных	5
	1.2.	Архитектура сети и среда передачи	6
	1.3.	Управление	7
	1.4.	Оборудование операторского класса	7
2.	ФУН	ІКЦИОНАЛЬНОЕ ОПИСАНИЕ ОБОРУДОВАНИЯ	8
3.	coc	ТАВ ОБОРУДОВАНИЯ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	9
	3.1.	Шасси	9
	3.2.	Интерфейсные платы	10
	3.3.	Платы специализированного назначения	12
4.	УПР	АВЛЕНИЕ	13
	4.1.	Управление платами FO и ETH	14
	4.2.	Резервирование	14
	4.3.	Синхронизация	14
	4.4.	Текущий контроль качества передачи	14
	4.5.	Климатические условия эксплуатации	14
	4.6.	Энергопотребление	15
	4.7.	Надежность	16
PFK	OMF	ІЛАЦИИ ПО ПРИМЕНЕНИЮ	17

ВВЕДЕНИЕ

Оборудование NATEKS MMX предназначено для использования в качестве узлов кросс-коммутации nx64 кбит/с (до 26x2.048 Мбит/с) на первичной сети BCC и в сетях доступа с предоставлением интегрированных аналоговых услуг (FXO, FXS, 2/4x проводной TЧ с/без E&M V типа, ТЧ с местной батареей, ISDN) и услуг передачи данных (RS485, V.35, V.24, V.28 V.11, V.10, Ethernet10/100).

Возможность наращивания емкости, «горячее резервирование» основных блоков и наличие функции межпоточной коммутации делают мультиплексор NATEKS MMX оптимальным решением для организации узлов доступа, реализующим следующие функции:

- мультиплексор голос/данные с временным разделением каналов, предоставляющий широкий набор пользовательских интерфейсов;
- межпоточный коммутатор (Cross-connect) адаптированный для всех сетевых топологий линейных, кольцевых и древовидных. Одна кассета NATEKS MMX способна обеспечить статическую коммутацию nx64 кбит/с до 26 потоков E1 (G.703/G704), передающими голос и данные;
- межсетевой ІР-шлюз.


Стр. 4 из 17 Версия 1.0

1. ОБЩЕЕ ОПИСАНИЕ ОБОРУДОВАНИЯ

1.1. Интегрированное решение для передачи голоса и данных

Мультиплексор NATEKS MMX поддерживает следующий набор пользовательских интерфейсов:

- 2.048 Мбит/с (E1), G.703/G.704 (120/75 Ом), HDB3 (поддерживаются сигнализации CAS, QSIG, PRI);
- 2/4-проводный канал ТЧ с сигнализацией Е&M G.712/G.714, G.713;
- 2 проводные телефонные интерфейсы, FXO (станционный) и FXS (абонентский);
- U-интерфейс (2-проводный, 2B + D, 2B1Q);
- V. 24/V. 11(V.35) и V. 24/V.28/RS485 порты передачи данных;
- Ethernet 10/100BaseT;
- оптический интерфейс для передачи до 8 Е1 и 100 Мбит/с Ethernet.

Puc. 1.1. - Применение мультиплексора NATEKS MMX

Версия 1.0 Стр. 5 из 17

1.2. Архитектура сети и среда передачи

Благодаря наличию функций межпоточной коммутации (cross-connect) и полному набору пользовательских интерфейсов, NATEKS MMX может использоваться в сетях связи самых разнообразных топологий. Например, для организации сетей выделенных каналов базовых операторов связи - в структурах типа «дерево» или «звезда» (см. рис. 1.2), а для ведомственных технологических сетей NATEKS MMX может быть использован в линейных структурах (см. рис. 1.3). В качестве среды передачи могут быть использовано любое каналообразующее оборудование, например:

- xDSL-модемы по медным линиям (например, FlexDSL или Megatrans);
- интегрированный PDH оптический интерфейс;
- PDH или SDH-мультиплексоры по ВОЛС (например, FlexGain A155 или FlexGain FOM4);
- РРЛ по радио (например, Nateks-Microlink).

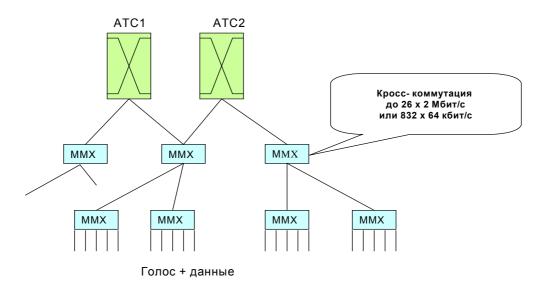


Рис. 1.2. Иерархическая сеть доступа оператора связи

Стр. 6 из 17 Версия 1.0

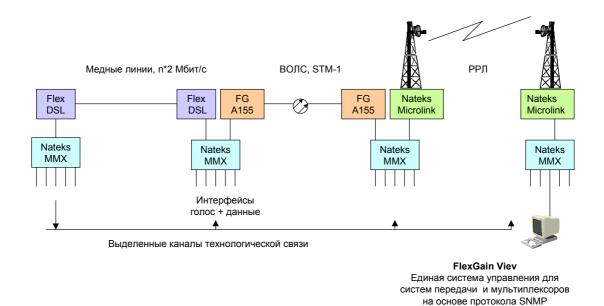


Рис 1.3. Линейная схема построения сети

1.3. Управление

Обеспечивается возможность как локального, так и удаленного управления оборудованием NATEKS MMX с персонального компьютера, оснащенного удобным графическим интерфейсом.

Использование совместно с другим оборудованием производства НТЦ НАТЕКС (SDH-системой FlexGain A155, PPЛ Nateks-Microlink, оборудованием доступа платформы FlexGain), NATEKS MMX обеспечивает беспрецедентную гибкость при разработке сетевой архитектуры и единую централизованную систему сетевого управления. Централизованная система сетевого управления на основе протокола SNMP FlexGain View позволяет управлять сетью состоящей из 400 кассет NATEKS MMX.

1.4. Оборудование операторского класса

NATEKS MMX разработан с учетом повышенных требований по функциональности, резервированию и надежности, предъявляемых операторами связи к оборудованию, используемому без ограничений на всех участках взаимоувязанной сети связи РФ. А именно:

- аппаратное резервирование блоков питания, матрицы коммутации и управления, программное резервирование агрегатных потоков 2.048 Мбит/с;
- синхронизация от основного и двух резервных источников (внутренних и внешних), наличие выхода синхросигнала;
- сигнальное управление, самотестирование, управление удаленным возвратом цикла;
- генерация ошибок для проверки эффективности схемы 2 Мбит/с потоков, контроль качества передачи.

Версия 1.0 Стр. 7 из 17

2. ФУНКЦИОНАЛЬНОЕ ОПИСАНИЕ ОБОРУДОВАНИЯ

Существует две базовые версии мультиплексора:

NATEKS MMX 12

Мультиплексор большой емкости. Предназначен для установки на крупных узлах предприятий связи. В данной версии мультиплексора обеспечивается аппаратное резервирование блоков питания, кросс-коммутации, синхронизации и управления. Кассета NATEKS MMX 12 рассчитана на установку до 12 интерфейсных плат.

NATEKS MMX 4

Мультиплексор компактного исполнения. Имеет возможность установки до 4 интерфейсных плат и предназначен для установки на корпоративных сетях связи небольших предприятий. В данной версии мультиплексора предусмотрен источник электропитания от сети 220 В переменного тока.

В мультиплексор NATEKS MMX могут устанавливаться платы двух типов:

- Основные платы:
 - плата управления мультиплексором (GIE или GIE-S). Интерфейс для подключения локального терминала: RS232 для модуля GIE и Ethernet для модуля GIE-S;
 - плата кросс-коммутации (26*2.048 Мбит/с) и синхронизации (СОВ или СОВ-В с встроенной функцией конференц связи);
 - плата источника электропитания (CNVR, 4-PC-AC, 4-PC-DC).
- Платы пользовательских интерфейсов:
 - 4-х портовая плата потоков 2.048 Мбит/с, интерфейс G.703/G.704;
 - 6 портовая плата каналов ТЧ, 2/4 проводные окончания с программируемой сигнализацией E&M;
 - 6 портовые платы телефонных каналов, 2-х проводные интерфейсы FXO (для подключения к ATC) и FXS (для подключения TA);
 - 12 портовая плата телефонных каналов, 2-х проводные интерфейсы FXO (для подключения к ATC);
 - 3 портовая плата интерфейсов передачи данных V.24/V.11(V.35);
 - 4 портовая плата интерфейсов передачи данных V.24/V.28;
 - 4 портовая плата интерфейсов передачи данных RS485/RS232;
 - 2 портовая плата ISDN, U-интерфейс;
 - плата оптического интерфейса;
 - плата интерфейса Ethernet.
- Платы специализированного назначения:
 - плата компрессии (сжатия) голосовых каналов методом АДИКМ.
 Режимы компрессии 64 → 32 кбит/с или 64→ 16 кбит/с.

Cmp. 8 из 17 Версия 1.0

3. СОСТАВ ОБОРУДОВАНИЯ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

3.1. Шасси

Шасси мультиплексора NATEKS MMX выполнено в виде кассеты для размещения в 19" стойке. Лицевая сторона кассеты закрывается съемной крышкой. В нижней части кассеты расположена коробка для укладки сигнальных кабелей. Конструктивное исполнение кассеты и кабельные подключения к ней образуют «клетку Фарадея», что обеспечивает защиту от электромагнитных излучений.

Существуют два типа шасси мультиплексора:

- Шасси NATEKS MMX 4 включает в себя:
 - кассету на 6 платомест (2 основные платы (СОВ и GIE) и до 4 интерфейсных плат). Кабельные соединения реализованы на тыловой стороне кассеты;
 - габариты (ВхШхГ), мм: 177 x 440 x 260;
 - блоки электропитания 4-PC-AC (110/220 В переменного тока) или 4-PC-DC (36 ... 72 В постоянного тока).
- Шасси NATEKS MMX-12 включает в себя:
 - кассету на 17 платомест (до 5 основных плат (COB, GIE, CNVR) до 12 интерфейсных плат). Кабельные соединения реализованы на фронтальной стороне кассеты;
 - габариты (ВхШхГ), мм:
 270/420 (с панелью кабельных соединений) х 440 х 270;
 - основная и резервная платы электропитания CNVR (36-72 В постоянного тока).

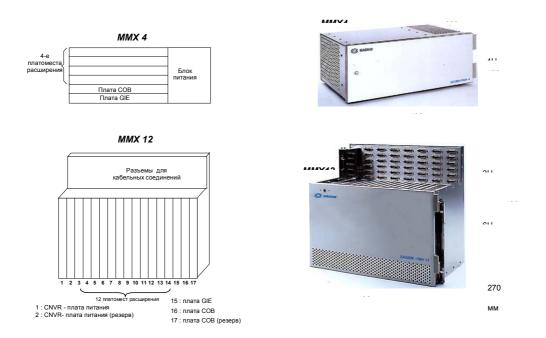


Рис. 3.1. Схема размещения плат и общий вид ММХ

Версия 1.0 Стр. 9 из 17

3.2. Интерфейсные платы

Плата A2S				
Тип инторфойса				
Тип интерфейса Линейный код	G.703, G.704, G.706, G732, G.736, G. 823, I.431 HDB3			
	4			
Число портов	2.048 Мбит/c ± 50*10 ⁻⁶			
Скорость передачи				
Импеданс	75 или 120 Ом			
Типовые приложения	межстанционная связь цифровых АТС, высокоскоростные терминалы, подключения потоков ISDN PRI (30 B+D), узлы цифровой кросскоммутации, цифровые выделенные линии, резервирование потоков 2.048 Мбит/с			
	Плата 6*PAFC			
Тип интерфейса	2/4проводный программируемый, с сигнализацией E&M, G.712, G.713, G.714, G.715			
Число портов	6			
Полоса пропускания	300-3400 Гц, аналоговый сигнал, G.711 (A law)			
Импеданс	600 Ом			
Типовые приложения	модемы, межстанционная связь АТС, выделенные каналы ТЧ			
	Плата 4*V24/V28			
Тип интерфейса	V.24/V.28, V.110 устройство DCE			
Число портов	4			
Скорость передачи	синхронный режим от 1200 бит/с до 64 кбит/с, асинхронный режим от 50 до 38400 бит/с			
Типовые приложения	компьютеры, модемы, низкоскоростные цифровые терминалы			
	Плата 3*V24/V11			
Тип интерфейса	V.24/V.11, V.35 (X.21) устройство DCE			
Число портов	3			
Скорость передачи	48, 56, nx64 кбит/с (1 < n < 31)			
Типовые приложения	высокоскоростные цифровые терминалы, узловые сервера, маршрутизаторы			
	Плата 6*FXS			
Тип интерфейса	2 проводная телефонная линия (абонентский интерфейс), Q552			
Число портов	6			
Полоса пропускания	300 3400 Гц, аналоговый сигнал, G.711 (A law)			
Импеданс	600 Ом			
Генерация вызова	звонок на 50 или 25 Гц			
Кодировка сигнализации	код абонента NEF на 2 битах			
Типовые приложения	уплотнение/вынос абонентских и таксофонных линий			

Cmp. 10 из 17 Версия 1.0

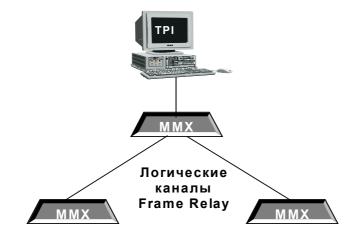
Тип интерфейса Нисло портов Полоса пропускания Импеданс Тенерация вызова	2 проводная телефонная линия (станционный интерфейс), детектирование метрического сигнала 12/16 Кгц, Q.552
Полоса пропускания Импеданс	-
/мпеданс	
	300 3400 Гц, аналоговый сигнал, G.711 (A law)
енерация вызова	600 Ом или сложное полное сопротивление с Zref
S. Spaces Dolooba	звонок на 50 или 25 Гц
Кодировка сигнализации	код абонента NEF на 2 битах
Гипичные приложения:	уплотнение/вынос абонентских и таксофонных линий
	Плата 12*FXO
Тип интерфейса	2 проводная телефонная линия (станционный интерфейс), детектирование метрического сигнала 12/16 кГц, Q.552
Число портов	12
Полоса пропускания	300-3400 Гц, аналоговый сигнал, G.711 (A law)
⁄Імпеданс	600 Ом или сложное полное сопротивление с Zref
енерация вызова	звонок на 50 или 25 Гц
Кодировка сигнализации	код абонента NEF на 2 битах
Гиповые приложения	уплотнение/вынос абонентских и таксофонных линий
	Плата 2*ISDN
Гип интерфейса	U, рек. ITU-T G.960 и G961, ETSI DE/TM 3004 и DTR/TM 3002
Пинейный код	2B1Q
Число портов	2
Гиповые приложения	уплотнение/вынос линий ISDN (NT1), модемов типа NTU-128, вынос базовых станций WLL систем (например, Tangara RD)
	Плата 4VAS
Гип интерфейса	V24/V28 или RS485
Число портов	4
Скорость передачи	асинхронный режим от 50 до 38400 бит/с
Типовые приложения	компьютеры, модемы, низкоскоростные цифровые терминалы
	Плата FO
Тип оптического интерфейса :	сменные модули SFP оптических п/п
Число оптических портов:	1
Число и тип пользовательских интерфейсов:	E1 до 8ми Ethernet 100 Мбит/с - 3
Типовые приложения:	Создание транспортных PDH оптических сетей

Версия 1.0 Cmp. 11 из 17

Плата ETH		
Тип интерфейса	Ethernet 10/100BaseT	
Число портов	3	
Типовые приложения	локальные вычислительные сети (LAN Ethernet)	

3.3. Платы специализированного назначения

Плата ADPCM		
Кодирование	ИКМ/АДИКМ, G711 (A law или □law), G.726	
Скорость АДИКМ канала	32 кбит/с (4 бита на канал) или 16 кбит/с (2 бита на канал)	
Типовые приложения	компрессия каналов с голосовым трафиком $64 oup 32$ кбит/с или $64 oup 16$ кбит/с.	


Cmp. 12 из 17 Версия 1.0

4. УПРАВЛЕНИЕ

Управление оборудованием NATEKS MMX может быть организовано двумя способами:

1. С помощью специализированного программного обеспечения TPI (Terminal Portable Intelligent) на платформе Windows PC.

С использованием TPI обеспечивается возможность как локального, так и удаленного управления оборудованием (через логические каналы Frame Relay). С персонального компьютера (на котором установлено ПО TPI), подключенного через F (RS232) интерфейс к одному из мультиплексоров NATEKS MMX можно управлять любым мультиплексором в сети. При этом каждому мультиплексору присваивается свой IP-адрес.

Puc. 4.1. Схема управления NATEKS MMX при помощи TPI

В локальной системе управления ТРІ реализованы следующие функции:

- конфигурирование интерфейсных плат, параметров синхронизации, матрицы;
- кросс-коммутации и т.д.;
- отображение ошибок;
- сигнализация аварий;
- мониторинг производительности;
- операции по обслуживанию мультиплексора (установка петли, зацикливание и т.п.).
- 2. С помощью централизованной системы управления FlexGain View.

Система сетевого управления реализована на основе протокола и работает под операционной системой Windows.

Программное обеспечение системы FlexGain View выполняет те же операции управления и мониторинга (конфигурирование, отображение ошибок, сигнализация аварий и т.д.), что и ТРІ, но одновременно для всей совокупности оборудования в сети.

Таким образом, система централизованного управления FlexGain View позволяет операторам получать информацию о состоянии всей сети в реальном масштабе времени и оперативно реагировать на текущие изменения.

Версия 1.0 Стр. 13 из 17

4.1. Управление платами FO и ETH

Платы FO и ETH имеют встроенные SNMP-агенты и управляются по протоколам SNMP, HTTP. Управление IP-трафиком осуществляется через локальный интерфейс Ethernet 10/100BaseT.

4.2. Резервирование

В шасси мультиплексора NATEKS MMX 12 предусмотрена возможность установки дополнительных плат CNVR и COB (COB-B) с целью обеспечения «горячего резервирования» на аппаратном уровне.

Резервирование плат СОВ (СОВ-В) позволяет защитить функции синхронизации и кросс -коммутации. В случае установки дополнительной платы CNVR реализуется защита мультиплексора по электропитанию.

Плата A2S обеспечивает резервирование потоков 2.048 Мбит/с на мультиплексорной секции дублируя поток данных между двумя окончаниями этой секции (1+1).

4.3. Синхронизация

NATEKS MMX может синхронизироваться от разных источников, а именно:

- от внешнего генератора синхросигнала;
- от внутреннего генератора;
- от одного из потоков 2.048 Мбит/с интерфейсной платы A2S;
- от одного из портов интерфейсной платы 2*ISDN.

Предусмотрены автоматический (с предустановкой приоритета) и ручной режимы выбора источника синхронизации.

4.4. Текущий контроль качества передачи

В оборудовании NATEKS MMX реализован текущий контроль качества цифровых потоков 2.048 Мбит/с, который выполняется без прерывания трафика и необходим для поддержания высокого стандарта качества передачи информации в сети.

Текущий контроль за частотой появления ошибочных битов (BER) выполняется процедурой Cyclic Redundancy Check (CRC4). Также обеспечивается подсчет секунд с ошибочными блоками (ES и SES) и число блоков с ошибками (BBE)

4.5. Климатические условия эксплуатации

Температурный диапазон			
Эксплуатация	+5 +40°C, при относительной влажности <85%		
Хранение	-5 +60°C, при относительной влажности <85%		
Перевозка	-25 +60°C, при относительной влажности <85%		

Стр. 14 из 17 Версия 1.0

4.6. Энергопотребление

В таблице 4.1. приведены результаты измерения потребления мощности, проводимые при нормальных условиях эксплуатации.

Таблица 4.1. Результаты измерения потребления мощности

Наименование платы	Потребляемая мощность, Вт	
Плата GIE	3	
Плата GIE-S	5	
Плата COB	5	
Плата СОВ-В	6	
Плата A2S	3	
Платы 4*V.24/V.28	1,6	
Плата 4*V.24/V.11 или плата 4VAS	2,6	
Плата 6*FXS	3,6 (0,6 на порт)	
Плата 6*PAFC	1,1	
Плата 2*ISDN	2,7 + 0,1 на порт	
Плата 6*FXO	1,7	
Плата 12*FXO	1,4	
Плата FO	10 (6 средняя)	
Плата ETH	5	
Плата ADPCM	4	

Версия 1.0 Стр. 15 из 17

4.7. Надежность

В таблице 4.2. приведены данные прогнозов интенсивности отказа (рассчитаны при соблюдении требований 1993 CNET'S) и среднее время наработки на отказ (МТВF) плат мультиплексора NATEKS MMX.

Таблица 4.2. Данные прогнозов интенсивности отказа

Наименование блока (платы)	Прогноз интенсивности отказов 10 ^{-9,} , ч	MTBF, лет
Плата CNVR	726	158
Плата GIE	1186	97
Плата COB	1620	71
Плата A2S	1229	93
Плата 3*V.24/V.11(V35)	623	184
Плата FO	3724	31
Плата ETH	3724	31
Плата 6*FXS	3724	31
Плата 6*FXO	1761	65
Плата 12*FXO	1782	65
Плата 6*PAFC	965	119
Плата 4* V.24/V.28	607	189
Плата 2*ISDN	1385	83
Плата ADPCM	416	274

Cmp. 16 из 17 Версия 1.0

РЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ

При помощи оборудования NATEKS MMX корпоративные пользователи имеют возможность оптимизировать стоимость выделенных линий при решении задач доступа в INTERNET, в сети выделенных линий операторов либо в коммутируемые сети. Если раньше для передачи голоса и данных требовались отдельные устройства, то теперь оператору связи достаточно установить в непосредственной близости к абоненту только один мультиплексор NATEKS MMX, имеющий широкий набор пользовательских интерфейсов.

Одним из важных приложений в применении оборудования NATEKS MMX является построение наложенной сети выделенных цифровых каналов nx64 кбит/с.

Наложенная сеть позволяет ведомственным или базовым операторам решить следующие актуальные задачи конвергенции сетей передачи данных и ТфОП:

- 1. Кросс-коммутация выделенных каналов (nx64 кбит/с) внутри наложенной сети.
- 2. Предоставление услуг выделенных междугородных каналов передачи данных с интерфейсами V.35 (G.703, X.21, V.24) nx64 кбит/с ведомственным операторам связи, Интернет-провайдерам и альтернативным операторам.
- 3. Вынос услуг ISDN от центральных ЦАТС с предоставлением прямых ISDN номеров (цифровая телефония и передача данных по коммутируемым каналам).
- 4. Вынос телефонных номеров (FXO, FXS, 2/4 проводные каналы тональной частоты) от центральных АТС на удаленные точки присутствия и филиалы.
- 5. Объединение ЛВС всех подразделений в единую корпоративную сеть передачи данных (подключение через интерфейс Ethernet 10BaseT без установки дополнительного оборудования, либо по портам V.24/V.28/V.35 к маршрутизаторам Cisco).
- 6. Организация оперативной связи, конференц-связи и селекторных совещаний для всех подразделений организации.
- 7. Повышение эффективности использования каналов связи за счет использования механизмов компрессии голосового трафика (2xE1 -> 1xE1 или 4xE1 -> 1xE1).

Версия 1.0 Стр. 17 из 17